Introduction	Geometric Brownian Motion	Sensitivity Analysis	Monte-Carlo Method	Quasi-Monte Carlo Method	Results

Sensitivity analysis for Monte Carlo and Quasi Monte Carlo option pricing.

Mohammad R. Islam

Youngstown State University

April 28, 2020

-	of contents	0	000		0
Introduction 0	Geometric Brownian Motion			Quasi-Monte Carlo Method	Results

- 2 Geometric Brownian Motion
- Sensitivity Analysis
- Monte-Carlo Method
- 5 Quasi-Monte Carlo Method

	Geometric Brownian Motion	Sensitivity Analysis 0	Quasi-Monte Carlo Method 00	Results 0
Introd	uction			

- Define the geometric Brownian motion
- Calculate the terminal stock price using Monte-Carlo and Quasi-Monte Carlo methods
- Calculate the price of a call option for both of the methods
- Calculate the delta of the call option by sensitivity analysis

Geometric Brownian Motion

If a process generate some outcome which is time-depended but can not be said ahead of time is known as a *stochastic process*.

Definition

A stochastic process $\{W(t): 0 \leq t \leq T\}$ is a standard Brownian motion on [0,T] if

- **(**) W(0) = 0
- It has independent increments. That is, for any t₁, t₂,..., t_n, W(t₂) - W(t₁), W(t₃) - W(t₄)..., W(t_n) - W(t_n) are independent random variables.
- $\textbf{ or every } 0 \leq s < t \leq T, W(t) W(s) \sim \mathbb{N}(0, t-s)$

Definition

A stochastic process $\{X(t): 0 < t < T\}$ is said to be a general Brownian motion with a drift parameter μ and diffusion coefficient σ^2 if $\frac{X(t)-\mu t}{\sigma}$ is a standard Brownian motion, written as $X(t) \sim BM(\mu, \sigma^2)$. The general Brownian motion still follow first two properties of the standard Brownian motion. However, the third property is modified as $X(t) - X(s) \sim \mathbb{N}(\mu(t-s), \sigma^2(t-s))$ for any $0 \le s < t < T$

Geometric Brownian Motion cont

• If a stochastic process $X_t \sim BM(\mu, \sigma^2)$ where μ is the drift and σ^2 diffusion parameter, then X_t satisfies

$$dX(t) = \mu t + \sigma dW(t) \tag{1}$$

where, W(t) is the standard Brownian motion or Wiener process.

• Define
$$X(t) = \log S(t)$$
 then

$$dS(t) = \mu S(t)dt + \sigma S(t)dW(t)$$
(2)

is the SDE for the stock price random process.

• For a given time t > 0, the solution of equation (2)

$$S(t) = S(0) + \mu \int_0^t S(r) dr + \sigma \int_0^t S(r) dW(r)$$
 (3)

Stochastic Model: Geometric Brownian Motion cont.

 A more explicit formula can be derived using Ito's formula for the function F(log S(t), t)

$$dF = \left[\frac{\partial F}{\partial t} + \mu \frac{\partial F}{\partial S(t)} + \frac{1}{2}\sigma^2 \frac{\partial^2 F}{\partial^2 S(t)}\right] dt + \left(\sigma \frac{\partial F}{\partial S(t)}\right) dW(t)$$

• After simplification we obtain

$$d \log S(t) = \frac{1}{S(t)} dS(t) + \frac{1}{2} \frac{-1}{S^2(t)} (dS(t))^2$$

= $\mu dt + \sigma dW(t) + \frac{1}{2} \frac{-1}{S^2(t)} (\mu S(t) dt + \sigma S(t) dW(t))^2$
= $(\mu - \frac{1}{2} \sigma^2) dt + \sigma dW(t)$

• For any time t > 0 the differential can be written as

$$S(t) = S(0)e^{(\mu - \frac{1}{2}\sigma^2)t + \sigma W(t)}$$
(4)

$GBM(\mu, \sigma^2)$ Simulation

0000

Introduction

Geometric Brownian Motion Sensitivity Analysis

For a given time set $t_0 = 0 < t_1 < t_2 < \ldots < t_n$ the stock price S(t) at time t_0, t_1, \ldots, t_n can be generated by

$$S(t_{i+1}) = S(t_i)e^{(\mu - \frac{1}{2}\sigma^2)(t_{i+1} - t_i) + \sigma\sqrt{(t_{i+1} - t_i)}Z_{i+1}}$$
(5)

Quasi-Monte Carlo Method

Results

where Z_1, Z_2, \ldots, Z_n are independent and identically distributed standard normals and $i = \overline{0, (n-1)}$.

The payoff from a European call option is defined as

$$Y = e^{-rT} (S_T - K)^+ \tag{6}$$

In pathwise derivative method we use the chain rule to compute

$$\frac{dY}{dS_0} = \frac{dY}{dS_T} \frac{dS_T}{dS_0} = e^{-rT} \mathbf{1}_{[S_T > K]} \frac{S_T}{S_0}$$
(7)

That is, Delta: $\Delta = e^{-rT} \mathbb{1}_{[S_T > K]} \frac{S_T}{S_0}$

To estimate the delta, we generate N values for S_T ; say S^1, S^2, \ldots, S^N and compute

$$\Delta = \frac{1}{N} \sum_{i=1}^{N} e^{-rT} \mathbb{1}_{[S^{i} > K]} \frac{S^{i}}{S_{0}}$$
(8)

Introduction O	Geometric Brownian Motion	Sensitivity Analysis O	Monte-Carlo Method ●00	Quasi-Monte Carlo Method	Results 0
Monte	-Carlo Metho	1			

For example, let say the current stock price, $S_0 = \$100.00$, Strike Price, K = \$100.00, interest rate, r = 5%, volatility, $\sigma = 30\%$, and time interval T = 1.

In Monte-Carlo Method we generate sufficiently large number of the end price, S_T and take the mean of those prices. In our example, we generate 10,000 price paths.

Introduction	Geometric Brownian Motion	Sensitivity Analysis	Monte-Carlo Method	Quasi-Monte Carlo Method	Results
0		0	○●○	00	0
Price F	Paths				



Figure: Price Paths

MC:Option Price and Sensitivity Analysis

Using the call option payoff equation (6),

$$Y = e^{-rT}(S_T - K)^+$$

and delta calculation equation (8),

$$\Delta = \frac{1}{N} \sum_{i=1}^{N} e^{-rT} \mathbb{1}_{[S^i > K]} \frac{S^i}{S_0}$$

we obtain

- MC Option Price=\$14.05
- MC Option Delta=0.6252

Introduction Geometric Brownian Motion Sensitivity Analysis Monte-Carlo Method Quasi-Monte Carlo Method Results

- We take the same example, current stock price, $S_0 = 100.00 , Strike Price, K = \$100.00, interest rate, r = 5%, volatility, $\sigma = 30\%$, and time interval T = 1.
- In Quasi-Monte Carlo Method we use low discrepancy sequence, in this case, Halton sequence to generate 10,000 price paths for the 1 time period.
- The price paths look almost same what we have seen in MC method.

Using the call option payoff equation (6),

$$Y = e^{-rT}(S_T - K)^+$$

and delta calculation equation (8),

$$\Delta = \frac{1}{N} \sum_{i=1}^{N} e^{-rT} \mathbb{1}_{[S^i > K]} \frac{S^i}{S_0}$$

we obtain

- QMC Option Price=\$14.39
- QMC Option Delta=0.6280

	Geometric Brownian Motion	Sensitivity Analysis 0	Quasi-Monte Carlo Method 00	Results •
Result	s			

	Option Price	Delta
Black Scholes	\$14.23	0.6243
Monte Carlo	\$14.05	0.6252
Quasi-Monte Carlo	\$14.39	0.6280

Table: Method comparison